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Summary

A numerical method for the convective heat transfer
problem is developed for low speed flow at mild
temperatures. A simplified energy equation is added to
the incompressible Navier-Stokes formulation by using
Boussinesq approximation to account for the buoyancy
force. A pseudocompressibility method is used to solve
the resulting set of equations for steady-state solutions in
conjunction with an approximate factorization scheme.
A Neumann-type pressure boundary condition is devised
to account for the interaction between pressure and
temperature terms, especially near a heated or cooled
solid boundary. It is shown that the present method is
capable of predicting the temperature field in an
incompressible flow.

Introduction

Heat transfer in viscous incompressible flow is of interest
in many industrial applications. For example, in a liquid
rocket engine, the liquid fuel and oxidizer are used as
coolant in various components such as the bearing in
the oxidizer and fuel turbopump. Also, the flow in an
autoclave for curing aerospace parts can be analyzed
using an incompressible flow assumption. For a complete
analysis of heat transfer in a wide range of temperature,
one must include radiation effects as well as boiling heat
transfer. However, of current interest are the problems
dominated by convective heat transfer. Therefore, in the
present study, the internal energy generated by viscous
dissipation and the thermal radiation effects are neglected.
The fluid is assumed to be incompressible with constant
physical properties except for the buoyancy effect due to
density variations. When the temperature of the flow field
is not high, the thermally driven velocity is small relative
to sonic speed. Thus a Boussinesq approximation can be
applied to the incompressible Navier-Stokes equations
to represent the temperature field. The purpose of the
present study is to develop a computational capability for
simulating viscous incompressible flows with temperature
variations. Since the method is intended for application
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to three-dimensional problems, a primitive variable
formulation is chosen based on a structured-grid
approach. To use one of the primitive variable solvers
(refs. 1–5), a simplified energy equation is added to the
incompressible Navier-Stokes equations. In the present
study, the first incompressible Navier-Stokes solver
developed at Ames Research Center, the INS3D code
(ref. 1), is selected to test the feasibility of using the
present formulation in predicting the temperature field
in an incompressible medium.

To validate the flow solver, a simple channel flow is
computed where an analytical solution exists. Then, two-
dimensional flow problems are computed and compared
with other numerical and experimental results. In all
these problems, natural, mixed, and forced convection
problems are examined. Finally, computed results in
three dimensions are compared with experiments. The
simulation capability related to thermal effects has been
demonstrated.

Solution Methods

Boussinesq Approximation

Neglecting the adiabatic temperature increase due
to friction, the equations governing the flow of an
incompressible fluid with constant properties can be
written as
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where xi is the Cartesian coordinates, ui the correspond-
ing velocity components, p the pressure, t the time, τij
the viscous-stress tensor,   

r
g  the vector of gravitational

acceleration, ρ the density, T the temperature, and α the
thermal diffusivity. The viscous stress tensor can be
written as
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where v is the kinematic viscosity, Sij the strain-rate
tensor, and Rij the Reynolds stresses. Various levels of
closure models for Rij are possible. In the present study,
turbulence is simulated by an eddy viscosity model using
a constitutive equation of the following form:

R R v Sij kk ij t ij= −1

3
2δ (6)

where vt is the turbulent eddy viscosity. By including the
normal stress, Rkk, in the pressure, v in equation (4) can
be replaced by (v + vt) as follows:

τij t ij t ijv v S v S= +( ) =2 2 (7)

In the remainder of this report, the total viscosity, vT, will
be represented simply by v. The present formulations
allow for a spatially varying viscosity.

The buoyancy force term is simplified through the
Boussinesq approximation where the density in the
buoyancy term is represented by a linear variation of the
temperature,

ρ ρ β= − −( ){ }0 01 ˜ T T (8)

where β̃  is the coefficient of thermal expansion. The
buoyancy term based on this approximation is included in
the momentum equation (2) resulting in
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The above governing equations can be nondimensional-
ized by introducing the following dimensionless
quantities:
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Here, u0 is the reference velocity, L the reference length,
and T1 – T0 the reference temperature difference. By
omitting the prime in the nondimensional variables, the
governing equations with Boussinesq approximation can
be written as the following dimensionless form:
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Where, 
  

r
eg is the unit vector for gravitational accelera-

tion. Depending on the flow regime, the reference
quantities vary and the coefficients are defined
accordingly:

for natural convection,

C C
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(12a)

for forced/mixed convection,

C C Ra CM B E= = =Pr , Pr , 1 (12b)

Here, the nondimensional numbers are defined as

Reynolds number: Re = u L

v
0
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Richardson number: Ri
Gr=

Re2

Pseudocompressibility Formulation in Generalized
Coordinates

The pseudocompressibility is introduced after the
governing equations (9)–(11) are transformed into general
curvilinear coordinates, (ξ,η,ζ), which results in
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Numerical Method

An unfactored implicit scheme can be obtained by
linearizing the flux vectors with respect to the previous
time step and dropping terms of the second and higher
order, which results in the following equations in delta
form:
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This equation is iterated in pseudotime until the solution
converges to steady state, at which time the original
incompressible Navier-Stokes equations are satisfied.
A direct inversion of equation (15) would become a
Newton iteration for a steady-state solution. In three
dimensions, however, direct inversion of a large block
banded matrix of the unfactored scheme would be
impractical. Numerous iterative schemes can be imple-
mented to solve these equations (see ref. 6 for a review).
In the present study, an approximate factorization scheme
by Beam and Warming (ref. 7) is used.

Buoyancy Effect on Pressure

The buoyancy effect in a thermally convective flow needs
to be assessed relative to the pressure wave propagation
and the boundary layer development. For the pseudo-
compressibility formulation, the pressure wave propa-
gates at a finite speed, the magnitude of which depends
on the pseudocompressibility parameter. When the
thermal effect is the dominant driving force such as in
natural convection, a pressure gradient is created by the
temperature variations. Thus the pressure boundary
condition should include temperature effect. A full
account of buoyancy effect on pseudocompressibility
will be given in a later report.
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Computed Results

A Vertical Channel with Temperature Gradient

A two-dimensional vertical channel flow is considered as
a first test case of the present formulation. As shown in
figure 1(a), one wall of the channel is heated to Tw and
the other is cooled down to –Tw. For an infinitely long
channel, an analytic solution exists in the following form:
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where v is the vertical velocity, h the channel width, and
V0 an average velocity.

The computation was performed using a long channel
with L = 100h. At the inlet, a uniform temperature T = 0
and a constant velocity v =V0 are specified, while at the
outlet a Neumann condition is imposed. In a forced
convection mode, the flow becomes a two-dimensional
Poiseuille flow. In the case of natural convection, which
has the zero streamwise pressure gradient, the flow is
generated by the buoyancy force, whereas in mixed
convection the flow develops not only by the buoyancy
force but also by the streamwise pressure gradient. All
three modes of heat transfer problems are computed by
selecting nondimensional parameters to represent
respective flow fields. In figures 1(b)–1(d), computed
temperature, vorticity, and velocity profiles at y/h = 50
are compared with the analytic solutions. Computations
essentially reproduced the analytic solutions.

Flow around a Heated Circular Cylinder

The external flow test case consisted of a circular cylinder
under the influence of a uniform upwardly moving fluid.
In two dimensions, the stream function–vorticity formu-
lation has been used in numerous numerical studies (for
example, see ref. 8). Since detailed measurements of the
flow field involving heat transfer are rare, the results of
the present incompressible Navier-Stokes computation
are compared to those of stream function–vorticity
approach by Sa (ref. 8). In the figure, INS and SV
represent the results obtained using incompressible
Navier-Stokes and stream function–vorticity formula-
tions, respectively. Since the stream function–vorticity
formulation satisfies the divergence free velocity
condition, this comparison can also be used to show that
the present pseudocompressible formulation results in
incompressible solutions.

In figures 2 and 3, computed results for forced, mixed,
and natural convection cases are presented. The incom-
pressible Navier-Stokes results are shown on the left half
of each figure and results of the stream function–vorticity
are shown on the right half (see fig. 2). The forced con-
vection case was computed at Reynolds numbers ranging
from 5 to 40. However, in the present paper, only the
results for Re = 20 are reported. The mixed convection
for the heated or cooled cylinder was computed at the
Richardson number, which is defined in equation (13),
from –1 to 4 with Re = 20. When the Richardson number
is negative, the cylinder is cooled, and the fluid in the
boundary layer and in the wake region is decelerated by
the cooling. As the Richardson number increases, the
flow is accelerated and the separation of the boundary
layer is suppressed. The streamlines in figure 2(b)
indicate that there is no separation at Ri = 4. The natural
convection case was computed at the Rayleigh number up
to 105. The dimensionless heat transfer coefficient, the
Nusselt number, is compared with experiments and other
computations as shown in figure 3 for the forced, mixed,
and natural convection cases. As the Reynolds number
increases or the cylinder is heated, the stronger velocity
near a surface makes the Nusselt number increase.
Overall, the present results agree well with numerical
and experimental data reported in references 9–14.

Thermally Driven Bifurcation in a Rectangular Cavity

Thermal instability is investigated next for a rectangular
cavity with an aspect ratio of 1 or 2, which has a hot
bottom wall and a cold top wall. For an aspect ratio of 1.0
at Ra = 105, there exists a unique solution with a single
vortex as shown in figure 4(a). The INS (left) and the SV
(right) show excellent agreement. On the other hand, the
cavity with an aspect ratio of 2.0 at Ra = 105 may have
two types of solutions: a double vortex as shown in
figure 4(b) or a single vortex in the middle of the cavity
as shown in figure 4(c). The bifurcation depends on the
external disturbances and the initial and boundary
conditions. In figure 4(b), the result of the INS (left) is a
little different from that of the SV (right), since the grid is
too coarse near the center line (the same grid number of
21 × 21 was used for both aspect ratios). However, in
general it is shown that the present method is adequate to
simulate the thermal instability.

Three-Dimensional Cavity

Most three-dimensional experiments are focused on the
investigation of heat transfer coefficients at surfaces for
practical applications. However, Morrison and Tran
(ref. 14) experimentally investigated the flow structure
in a natural convection mode generated by heated walls
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in a vertical rectangular cavity shown in figure 5. The
temperature difference between the heat transfer plates
was fixed at 10°C and the plate separation distance at
L = 40 mm (Ra = 5 × 105). The cavity aspect ratio was 5
in both the horizontal and vertical planes (H/L and B/L).
Morrison and Tran measured the velocity components by
using Laser-Doppler anemometry. The nondimensional
z-component velocity is compared between the present
results and Morrison and Tran’s experimental data in
figures 6 and 7. Good agreement is observed, indicating
that the Boussinesq approximation is adequate for this
type of flow.

Concluding Remarks

In the present study, it is shown that the Boussinesq
approximation is valid for the analysis of heat transfer
in an incompressible medium with mild temperature
variations where radiation or boiling heat transfer can be
neglected. The resulting formulation is validated using a
version of the INS3D code. Computed results show that
forced, mixed, and natural convection problems can be
accurately predicted using the Boussinesq approximation,
even at Ra = 5 × 105 in the case of Morrison’s experiment
(ref. 15). This indicates that the interaction between
pseudocompressibility and buoyancy force is properly
accounted for by the present method. Overall, the cost of
computing attributed to the temperature equation has been
increased less than 5 percent.
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Figure 1. Vertical channel with temperature gradient: o, computed result;  , analytic solution.
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(a) Forced convection (Re = 20, Gr = 0)

(b) Mixed convection (Re = 20, Gr = 1600)

(c) Natural convection (Ra = 103)

Figure 2. Flow around a heated circular cylinder: Comparison of incompressible Navier-Stokes (INS) and stream function-
vorticity (SV) computations.
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(a) Forced convection

(b) Mixed convection

  

(c) Natural convection

Figure 3. Heat transfer coefficient for flow around a heated circular cylinder: Comparison of computed results and
experimental data.
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(a) Aspect ratio of 1.0 (Ra = 105)

(b) Aspect ratio of 2.0 (Ra = 105: type A of bifurcation flow)

(c) Aspect ratio of 2.0 (Ra = 105: type B of bifurcation flow)

Figure 4. Thermally driven bifurcation in two-dimensional rectangular cavity: Contour plot of the temperature, the stream
function, and the vorticity.
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Figure 5. Geometry for a 3-D cavity flow: Th – Tc = 10°C, Ra = 105.

Figure 6. Vertical velocity component, w, at z/H = 0.5 for natural convection problem in a 3-D cavity: Th – Tc = 10°C,
Ra = 105, y* = y/B.
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Figure 7. Vertical velocity component, w, at y/H = 0.5 for natural convection problem in a 3-D cavity: Th – Tc = 10°C,
Ra = 105, z* = z/H.
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